Flood Disturbances Impact the Autotrophic Communities in the Springs of the Suwannee River Basin

Paul Donsky, Samantha T. Howley, Geraldine Klarenberg, and Matthew J. Cohen University of Florida

Ecosystem State Change

- Pulse Disturbances: short duration, rapid shift
- Press Disturbances: long duration, gradual change
- Interactions: Press disturbances reduce resilience, priming a lasting state shift after a pulse disturbance
- Disturbance regimes are changing due to human impacts
- Entangled interactions complicate management

https://springseternalproject.org/

Then & Now: SAV gone in most springs, often replaced by algae What are the underlying causes? What are the roles of press and pulse disturbances?

Press disturbances in springs

- Much more frequently studied and cited factors
 - Flow reductions
 - Nutrient pollution
 - Clarity
 - Recreation
 - Dissolved Oxygen

Pulse disturbances in springs

- Ecological impacts completely unstudied
- River Intrusion Events (RIEs): Surface waters flood into springs
 - Flow reversals: surface water completely displaces groundwater, spring becomes a sink
 - Brownout: surface waters mix with groundwater in spring pool
- Reduction in light availability: potential effect on autotrophs

Normal Flow Conditions

RIE Cross Section

- River stage ≥ aquifer stage
- Increased depth and decreased clarity
- Introduce DOM, trigger respiration, reducing oxygen
- Springs higher above river more resistant to RIEs

Case study: Gilchrist Blue Springs

- Santa Fe River rose 4 meters and covered Gilchrist Blue Springs for several weeks
- *S. kurziana* was the dominant SAV Species
- Most SAV gone after flood
- Some recovery but *S. kurziana* remains scarce
- Similar events in Crystal River and the St. Johns River

Hurricane Irma

Hypothesis

- Autotrophic community structure in springs is controlled by disturbance regimes
- Specifically: springs with more frequent disturbances will be less likely to support SAV and exhibit higher prevalence of algae through reduced competition

Study Site and Survey Methods

- Suwannee River Basin
- 62 springs sampled from May 2022 to April 2023
- Quadrat survey: measured % cover of algae and SAV within a 0.5m² area in haphazardly selected locations
 - n samples based on the size of spring
- Dissolved oxygen (DO) and Specific Conductance (SpC) measured in spring vent

Disturbance Frequency (P_{RIE}) Distribution

- Determined using water quality data, mainly specific conductivity (2014-2022)
 - SpC: high in GW, low in surface water
- Bars: frequencies from discrete sample method
- Points: frequencies from continuous data method
 - Discrete observations accurately capture pulse disturbance frequency
- Average frequency for Suwannee Springs = 0.17

Results – SAV % Cover

- Heavily skewed distribution: all models non-significant
- Visual data exploration revealed thresholds
 - Tested with Mann-Whitney U test
- P_{RIE}: 0.2 (p = 0.004)
- DO: 2 mg/L (p < 0.01)

Floridastateparks.org

SAV Growth Requirements

- Minimum light requirements for freshwater SAV: <u>10% surface</u> <u>irradiance^a</u>
- Ichetucknee River: average percenttransmittance = 53% at 1m^b
- Santa Fe River = 1-23%; probably on the lower end during floods
 - % Transmittance to bed probably < 10%
- What are the effects of a two-month long RIE?

^aKemp et al., 2004 ^bFlorida Springs Institute, 2020

Results – Algae % Cover

• On its own, P_{RIE} is not a significant predictor of algal cover

	Variable	Relationship	p-value
<u>Model 1</u>	P _{RIE}	Negative	0.72
Pseudo-R ² = 0.04			

Results – Algae % Cover

- On its own, P_{RIE} is not a significant predictor of algal cover
- Significance emerges in multivariate models
- Model 1a: Interaction effect between $\mathsf{P}_{\mathsf{RIE}}$ and DO
 - Observed in previous research (Hensley and Cohen, 2017)

	Variable	Relationship	p-value
<u>Model 1</u>	P _{RIE}	Negative	0.72
Pseudo-R ² = 0.04			
<u>Model 1a</u>	P _{RIE}	Negative	0.007
Pseudo-R ² = 0.35	DO	Negative	<0.001
	P _{RIE} * DO	Positive	0.006

Results – Algae % Cover

- On its own, P_{RIE} is not a significant predictor of algal cover
- Significance emerges in multivariate models
- Model 1a: Interaction effect between P_{RIE} and DO
 - Observed in previous research (Hensley and Cohen, 2017)
- Best selected model also includes Recreation, depth (stdev), and Total Phosphorous (TP)
 - TP: best univariate predictor of algae cover (p = 0.026, Pseudo-R² = 0.15, df = 32)
 - No relationship observed with Nitrate

	Variable	Relationship	p-value
<u>Model 1</u>	P _{RIE}	Negative	0.72
Pseudo-R ² = 0.04			
<u>Model 1a</u>	P _{RIE}	Negative	0.007
Pseudo-R ² = 0.35	DO	Negative	<0.001
	P _{RIE} * DO	Positive	0.006
<u>Model 1b</u>	P _{RIE}	Negative	<0.001
Pseudo-R ² = 0.54	DO	Negative	0.003
	P _{RIE} * DO	Positive	0.002
	Recreation	Negative	0.023
	Depth (stdev)	Positive	0.002
	Total Phosphorous	Positive	0.099

DO x RIE Interaction

- Evidence that RIEs increase algal cover by reducing competition with SAV
- In springs with no DO (no SAV) increased RIEs inhibit algae

Oxygen and ecosystem state

- Springs with high P_{RIE} (>0.20) exclusively support algae
- Intermediate $\mathsf{P}_{\mathsf{RIE}}$ (0 to 0.20): SAV distributed along DO gradient
- SAV produces oxygen and needs it to grow
 - Possible negative feedback loops
- Disturbances stress SAV communities
- Sediment hypoxia
- SAV recovery prevented
- Algae-dominated stable state

Major Takeaways

- 1. RIEs are associated with both SAV loss and algal proliferation
 - 20% disturbance threshold for SAV survival has implications for springs protection plans (MFLs) and SAV restoration projects
- 2. Oxygen is a critical covariate with autotrophic community structure
 - Negative feedback loops could play a role in maintaining algae-dominated states, inhibiting SAV recovery
- 3. Disturbance regime is predictable based on hydrologic properties
 - Further sources of variation should be investigated, including the degree of anthropogenic influence

Future Research

- Long-term studies: Direct observations on effects of disturbances of different sizes and recovery patterns
- Mesocosm studies: Disentangle interaction effects with DO and nutrients

Questions?